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SUMMARY 

The equations describing the mechanical behaviour of intervertebral disc tissue and other swelling porous media 
are three coupled partial differential equations in which geometric and physical non-linearities occur. The 
boundary conditions are deformation-dependent. To solve the equations for an arbitrary geometry and arbitrary 
boundary conditions, we use the finite element (FE) method. The differential equations are rewritten in an integral 
form by means of the weighted residual method. The domain of the integral is defined via a set of shape functions 
(i.e. finite elements). By applying the Gauss theorem and rewriting with respect to the reference state (total 
Lagrange), non-linear equations are obtained. These are solved by means of the Newton-Raphson technique. In 
order to get a finite set of equations, the weighted residual equations are discretized. The shape functions are 
chosen as weighting functions (Galerkin method). This discretization results in a non-symmetric stiffness matrix. 
A general description is given for the elements implemented into the commercial FE package DIANA (DIANA 
Analysis B.V, Delft, Netherlands). The numerical results of unconfined compression of a schematic intervertebral 
disc with varying proteoglycan concentration are given. 
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INTRODUCTION 

Soft biological tissues such as the intervertebral disc feature mechanical properties that many engineers 
would wish to attribute to their technical materials. They combine high flexibility and deformability 
with high strength. They incorporate within their structure self-repair mechanisms and mechanisms 
which redistribute loads to avoid stress concentrations. 

The intervertebral disc plays an important role in the load transmission through the human lumbar 
spine. In order to understand the normal and pathological behaviour, biomechanical models are 
needed. Intervertebral disc tissue consists of a collagen and elastic fibre network embedded in a 
hydrated proteoglycan (PG) matrix. Small nutrients and ions are dissolved within the tissue. Because 
of the entanglement of the PGs and the fibre network, only the interstitial fluid and small ions may 
flow. The PGs are ionized, and because they are relatively stagnant, osmotic effects are important. 
Deformation of the tissue can be achieved either by mechanical or chemical loading. The overall 
response which occurs is the result of (i) the diffusion of mobile ions, (ii) the large deformation of the 
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fibre network and the ground substance with relative fluid flow into or out of the tissue and (iii) 
osmosis. The phenomena observed in the intervertebral disc are similar to those observed in other 
swelling porous media such as hydrogels, articular cartilage and clays. 

THEORY 

In order to describe this complex behaviour, we use the theory of mixtures.' Starting with the 
kinematic relationships and the general balance laws, specific assumptions for intervertebral disc tissue 
are incorporated and constitutive restrictions based on the entropy principle are derived.* A summary is 
given in subsequent paragraphs. The following notations are used. The suffixes m, f, s, i, - and pg 
stand for mixture, fluid, solid, ions, anion and proteoglycan respectively. The subscript 0 denotes the 
reference state. External and internal are abbreviated to ext and int respectively. 

Within intervertebral disc tissue, three immiscible and intrinsically incompressible constituents are 
distinguished: solid, fluid and ions. The elastin and collagen fibres and the proteoglycan ground matrix 
are considered to be solid. The third constituent consists of small nutrients and ions. Although many 
different ions and nutrients are involved, they are treated as one constituent: the ion phase. The latter 
consists of two species: anions (negatively charged) and cations (positively charged). Both the counter- 
ions associated with ionized PG chains and the free mobile ions contribute to the total cation 
concentration. By neglecting the volume of the ions compared with the volume contribution of the 
solid and fluid, the mass balance is given by 

v o vs + v o [nf(v)' - vS)] = 0, (1) 
where v is the velocity and n is the volume fraction. By neglecting the inertial terms and the body 
force, the momentum equation is given by 

v 0 (US + uf +a') = 0, ( 2 )  

u' NN 0, ( 3 4  

where u is the Cauchy stress. The non-linear constitutive relations for the Cauchy stresses are 

- p n s I I + p F o - o F ,  a* c 

dES 
f uf = -pn II, 

where p is the hydrodynamic fluid pressure, F is the deformation gradient tensor, p is the mixture 
density, E is the Green-Lagrange strain tensor and I,!I is the mixture Helmholtz free energy. The last 
term on the right-hand side of (3b) is known as the effective stress oeff in soil mechanics. 

Assuming that charge neutrality is maintained at all times within the tissue, the constitutive relations 
for the interactions between the constituents are given by the extended Darcy equation 

f f  n (v -vs) = -K o V(p - TC), 
n = CpRT[2(c- - c,,~) + cpg], (4) 

where K is the permeability tensor, n is the osmotic retention, c is the concentration, R is the universal 
gas constant, T is the absolute temperature and Cp is the osmotic coefficient. The diffusion equation for 
the mobile ions includes convection by the fluid and interaction with the ionized proteoglycans: 

1 
n f 

+ Vg 0 vf = - V 0 [D o ( Vg + 5 Vcpp)], 
where Q is the mobile ion density, D is the diffusion tensor and 5 is the interaction coefficient between 
mobile and stagnant ions. 
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Substitution of the constitutive relations (3), (4) into (I), (2) and rewriting the material time 
derivative with respect to the fluid into the solid, (5 ) ,  yields three coupled partial differential equations: 

momentum V o ueff - Vp = 0, (64  

(6b) 

(6c) 

continuity V o vs - V o [K o V(p - n)] = 0, 

(&)s + VQ o (vf - vs) = l/nf V o [D o ( VQ + 5 Vcpg)]. dzflusion 

The ionized proteoglycans are the origin of the fixed charge concentration. As the proteoglycans are 
entangled in the collagen network, the concentration varies with the deformation. Owing to the 
intrinsic incompressibility, a volume change is only achieved by expelling fluid out of the tissue. The 
fixed charge concentration in the deformed state is expressed as 

(7) cpg = total amount PG - - c$g v; - - .tTg 
Vf V;  - ( I - J ) ~ ;  1 - ( 1  - J ) / n ;  

where J is the volume change. Using the same derivation as for 19, the porosity in the deformed state 
is given by 

n = 1 - ( 1  - .:)/.I. (8) 
f 

Equations (6H8) form the set of equations describing the triphasic swelling behaviour of 
intervertebral disc tissue. The initial and boundary conditions are given by the Donnan equilibrium 
results3 

2c- = -cpg J K C ~ ~ ) '  + 4f2c:~,1, 

p = 4RT[2(c- - ~,,t) + cPg], 

( u e ~  -PI) o n  = t, 

(94  

(9b) 
where f is the mean activity coefficient quotient. The boundary condition for the momentum of the 
mixture is 

where t is the boundary stress vector and n is the unit normal vector on the boundary. The boundary 
conditions depend on the local proteoglycan and ion concentrations. These concentrations change 
during deformation. Hence the boundary conditions are deformation-dependent. 

(10) 

NUMERICAL SOLUTION METHOD 

The weighted residual method 

The primary unknowns are the displacement of the solid, u, the fluid pressure p and the ion density 
Q. Multiplying the momentum, continuity and diffusion equations by the arbitrarily chosen functions w, 
g and h respectively and integrating the result over the deformed mixture volume K the weighted 
residual form of (6) is obtained. Because w, g and h are arbitrary functions, these formulations are 
equivalent. Generally both the volume V and the surface A change with time. Calculation of the 
integrals is simplified by transforming them to the reference volume Vo with outer surface A0 (total 
Lagrange description). To this result the Gauss theorem is applied. Finite rotations should not influence 
the Cauchy stress (subscript eff is omitted from here), the permeability and the diffusion coefficient; u, 
K and D must be neutralized for rigid body rotations: 

s = JF-l u o F-', K = R o KO o R', 
D = R o Do o R', 

K, = U-' o KO o U-', 
D, = U-' o Do o Up', ( 1 1 )  

where S is the second Piola-Kirchhoff stress tensor, R is the rotation tensor from the polar 
decomposition of the deformation gradient tensor F = R oU, U representing the stretch tensor, K, is 
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the Lagrangian permeability tensor and D, is the Lagrangian diffusion tensor. Substitution of these 
preliminary material definitions in the weighted residual equations yields 

(V0w)':[(S o FC -pJF-')]dV = J' vn /An 
t 0 wdA, 

1 [hnf(e) ,  + hnf Ve o vSf + Voh 0 D, 0 VoeIJdV = JA,, hq'dA, 

where t = (F-' o no) o (a - pZ)J, is the surface stress vector, qf = (F-" o no) o K o V(p - ~ ) J A  
represents the fluid source across the surface and q' = (F-' 0 no) o D o V(C)JA represents the ion 
source across the surface. Equation (12) is non-linear in the primary unknowns. Because of this non- 
linearity, it cannot be solved directly: an iterative solution procedure is needed. We choose the 
Newton-Raphson technique. 

Discretization of the weighted residual equations 

Vn 

The position vector x and the nodal unknowns u, p and e are discretized using the shape functions 
Nu, N p  and N, respectively. Applying the Galerkin method, the corresponding weighting functions are 
interpolated in the same way, The nodes for the different fields may coincide. 

Stiffness matrix 

Further elaboration of the weighted residual equations is eased as the integrands become 
independent of the nodal quantities. Substituting the interpolation and weighting functions in the 
linearized weighted equations and taking into account that the nodal unknowns are still arbitrary, a set 
of finite linear equations is obtained: 

0 0 Du/Dt K L + K N L  Q 0 [-9. : A,] [a;:] + [ : 0 K , + C  

with 

[C] = 1 nfN: o [(vf - vs) o B;f]JdV, [Q] = 1 B, o NTJdV, 
vo vo 
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where BL relates the linear part of the Green-Lagrange strain to the nodal displacements, BNL relates 
the displacement gradients to the nodal displacements, D is the rigidity matrix which contains the 
stress-strain relation, S is the second Piola-Kirchhoff stress matrix according to Bathe4 and S, is the 
same quantity stored as a column. The resulting system matrix is non-symmetric. In the derivation of 
the system matrix, terms with Ac and Au in the continuity equation and terms with Ap and Au in the 
diffusion equation are neglected. In all three equations the incremental change in the external load is 
neglected. Of course this may result in loss of convergence speed. For the time integration, Euler 
backward and Newmark schemes are used. 

Element formulation 

For the numerical studies we use isoparametric elements of the serendipity family. Two-dimensional 
plane strain, three-dimensional and axisymmetric elements have been developed. The order of 
interpolation of the different fields is determined by the originating equations (6). Looking at the 
momentum equation (6a), one should interpolate the stress and pressure in the same way. In a first- 
order approximation the stress is proportional to the first-order derivative of the displacement. Thus the 
pressure should be interpolated one order lower than the displacement. However, the continuity 
equation (6b) shows that the velocity should be interpolated in the same way as the pressure gradient, 
indicating that the pressure should be interpolated one order higher than the displacement. These two 
demands are in conflict. Looking at the weak formulation, a similar conclusion can be made. We 
decided to interpolate the displacement and pressure in the same way. The diffusion equation (6c) is 
also parabolic. Thus all three fields are interpolated in the same way. This has computational 
advantages. Owing to these choices, stability problems arise for certain combinations of spatial and 
temporal di~cretization.~.~ 

Integration of the volume and surface integral is carried out by means of Gauss integration. For the 
implementation of the software the commercially available finite element package DIANA is used.7 

Boundary conditions 

The deformation-dependent boundary conditions are accounted for by means of a least squares 
method. Introducing penalty factors, the following sum is minimized with respect to the free 
parameters p and Q at each nodal point: 

s = 21 @ - P b Y  + 22(@ - eJ2, (15) 

where @b is the ion density at the boundary according to (9a), P b  is the pressure at the boundary 
according to (9b) and 3L1 and A2 are the penalty factors. The resulting stiffness matrix and right-hand 
side are given by 

EXAMPLE: UNCONFINED COMPRESSION 

This application has limited physiological meaning, since the geometry and material properties are not 
chosen according to measured values and no anatomical details are modelled. The only function of this 
example is to show the possibilities of the numerical strategy. The intervertebral disc consists of a 
fibre-reinforced multilayer mantle (annulus fibrosus) surrounding a randomly distributed network of 
collagen fibres (nucleus pulposus), both embedded in a proteoglycan matrix. The nucleus is modelled 
isotropically: Young modulus 1 a 5  MPa, Poisson ratio 0-1. The orientation of the fibres in the annulus 
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nucleus pulposus anulus fibrosus 

fibrosus is not modelled: the annulus is chosen isotropic with a Young modulus of 3-5 MPa and a 
Poisson ratio of 0.1. A uniform permeability of 9.0 x lop4 mm2 MPa-' sC1 is assumed. In Figure 1 
the dimensions of the modelled intervertebral disc of the lower lumbar spine (L4-L5) are given. 

The mesh contains 352 linear plane strain elements with 391 nodes. A grading towards the top and 
outer annulus is used. At the boundaries with fluid and ion exchange, boundary elements are used 
(total 26). Both the base (j = 0 mm) and the top 0, = 5.5 mm) and x = 0 mm are planes of symmetry. 
At x = 0 the displacements in the x-direction equal zero. At the base the displacements in the y- 
direction equal zero. Above the nucleus, lymphatic activity yields that the symmetry condition on both 
the ion and fluid flow at the top is lost: flow is possible at this position. At the top the annulus is 
covered with a layer of cortical bone (not modelled). This layer is impermeable to both fluid and ions. 
Fluid flow is also possible across the outer annulus (x = 22 mm). The proteoglycan concentration and 
porosity vary: constant in the nucleus and decreasing towards the boundary of the annulus. The 
distribution is chosen according to measured values.8 

The resulting initial osmotic pressure profile is shown in Figure 2. This distribution is chemically in 
equilibrium with the external solution of physiological saline. Mechanical equilibrium while keeping 
the top supported in the y-direction is achieved by the steady state solution. Owing to expansion in the 
x-direction of the disc, local redistribution (decrease) of the proteoglycan concentration occurs (Figure 
2). The stiffness difference between the annulus and nucleus results in a maximum in the proteoglycan 
concentration at the interface. 

From this equilibrium ( t  = 0) the intervertebral disc is loaded by prescribing the displacement of the 
top in the y-direction according to 

UOt ,  0 < t < t o ,  { uoto, t > to. 
u( t )  = 

1 

.In - 

.02 I 1 I I I I I I I 
0 2.5 5 7.5 10 12.5 I5 17.5 M 22.5 

DISTANCE 

Figure 2. Initial ( + ) and equilibrium (t  = 0, *) pressure (MPa) distribution at the base 0, = 0) 
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Time: IDDO x 
Time: 180l 
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Figure 3. Pressure (MPa) profile at the base as a function of time (s) 
DISTANCE- 

We used uo = 0.55 mm and to = 900 s. The resulting linear strain in the y-direction is 10%. 
In Figure 3 the pressure distribution at the base is given. The total time period is divided into 57 time 

steps using the Euler backward scheme. The first 900 s are divided into nine steps, the time increment 
increasing from 10 to 275 s. The time steps for the relaxation period ( t  > 900 s) varied from 10 to 
500 s. Owing to the non-uniform proteoglycan distribution, an overshoot at the nucleus-annulus 
interface occurs. In the following relaxation period the pressure drops. The resulting equilibrium 
pressure equals the osmotic pressure. Because fluid is expelled from the tissue, increasing the 
proteoglycan concentration, this pressure is higher than at t = 0. 

In Figure 4 this mechanism is demonstrated for the nodes at x = 0, y = 0, at x = 0, y = 5 .5  and at 
x = 22, y = 0. At the start of the relaxation period a pressure gradient in the y-direction exists. During 
the relaxation period this gradient vanishes. In the x-direction a pressure gradient is maintained 
according to the proteoglycan profile. 

...................... -__I 

.os - 
I 

I I I I 1 .i .i .d .i 1.2 1.4 1.6 1.8 2 0 TIME X *  1.OE 4 

Figure 4. hessure (MPa) history for x = 0, y = 0*, x = 0, y = 5.5( + ) and x = 22, y = 0 ( x ) 
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CONCLUSIONS 

To the authors’ knowledge, this is the first finite element description of the triphasic behaviour of 
swelling porous media. It includes finite deformations, fluid flow relative to the solid, diffusion of ions 
and osmosis. A first assessment is made to evaluate the model. 
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